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J. Phys. -4: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Quantum electrodynamics in an analytic representation 

D. K. SARASWATI 
Department of Physics, Queen Mary College, University of London, Mile 
End Road, London E l ,  England, and 
Department of Natural Sciences and Mathematics, Notre Dame University of 
Nelson, Nelson, B.C., Canada 
M S .  received 5th August 1970 

Abstract. The analytic representation of quantum field theory suggested in a 
previous paper by Valatin and the author is further investigated, by working 
out its details for quantum electrodynamics. The coupled equations for Green’s 
functions are discussed and the lowest order contributions to Compton and 
M0ller scatterings are calculated. Through the Fourier transforms, the expres- 
sions show close agreement with the results of the conventional approach. A 
nonlocal modification of the interaction kernel is studied. This leads to  finite 
self-energy, vacuum polarization and vertex operator expressions, and in the 
limit, to a simple regularization of quantum electrodynamics. 

1. Introduction 
This paper is a continuation of a previous paper by the author and Valatin (1969 

to be referred to as I), in which an analytic representation of quantum field theory 
has been proposed. The  formulation is based on the connection between the Hilbert 
space of quadratically integrable functions of real variables q and a Hilbert space of 
analytic functions of complex variables x, originally established by Rargmann (1961, 
1967). The  operators in this formulation are proper operators for which the 6-func- 
tions of the q-space commutation relations are replaced by analytic kernel functions in 
z-space and a reference to distributions is therefore avoided. Local interaction 
terms in q- space take a ‘nonlocal’ appearance in x- space with the presence of an inter- 
action kernel W in each interaction term which is a function of three sets of complex 
variables and depends on an arbitrarily chosen length a. For a four-dimensional 
formulation one has to work in euclidean metric and the field equations can be derived 
directly from an action integral in euclidean x-space with the application of a varia- 
tional calculus in which the variations are restricted to analytic functions only. 

The  application of this analytic representation of quantum field theory to electro- 
dynamics forms the subject matter of the present paper. T o  study the interaction of a 
Dirac field with an electromagnetic field, field equations as well as coupled equations 
for Green’s functions in euclidean z- space are derived and scattering amplitudes in 
momentum space are calculated using a simple relationship between the Green’s 
functions and the scattering amplitudes. The  results obtained are the same as the 
ones from the conventional theory and are independent of the arbitrarily chosen 
length a which is an essential feature of the x-space formulation. 

The  interesting aspect of the x-space formulation of quantum field theory is the 
presence of the interaction kernel W at each vertex. Since the formulation itself is 
independent of the structure of W, one might consider the analytic representation 
of quantum field theory as a more general theory with the theory corresponding to 
the local q-space interaction embedded in it. It will be of interest then to study differ- 
ent structures of Wand the physical conclusions which result from them. We propose 
to show that a simple modification of this interaction kernel leads to finite electron 

165 
I A  



166 D. K. Saraswati 

self-energy, vacuum polarization and vertex operator expressions and, in the limit, 
to a simple regularization of electrodynamics. 

2. Field equations 
The analytic representation of quantum field theory, as has been suggested in I, 

is based on the connection between the Hilbert space Z of square integrable func- 
tions p(q) of real variables q and a Hilbert space 9- of analytic functions f(x) of 
complex variables z 

where the complex variable z is chosen as 

x = x-ia2K 2 = x+ia2K 

x and k being the average position and momentum of a wave packet of width a and 
the transformation kernel A is given by 

1 
~ ( z , q )  = (r;a2)-114exp(- - (z -q ) ’ ) .  2 2  (IC) 

The scalar product of two functions f and f’ E 2F j s  defined by the integral 

and is equal to the scalar product 

(e ,  e;’) = 1 d!?Y”(dV’(d  P a )  

of the corresponding functions p and p ’ e  8. The inverse mapping of 9 onto Z is 
defined by 

P(4) = d P ( 4  4 5 ,  df(4 (2b) 

and the transformation kernel A, with properties 

A ( ~ ,  q)  ~ ( 5 ,  st )  = - q ’ )  ( 3 4  

establishes a one-to-one correspondence between 2 and 9. This Hilbert space 
9 of analytic functionsf(2) of complex variables z is a modification of the Hilbert 
space of analytic functions originally introduced by Bargmann (1961, 1967). 

I t  then follows from the above discussion that any integral operator kernel K(q, 4’) 
of an operator K operating on functions p(q) corresponds in z representation to a 
kernel K(x, a’) 

K(z ,  5’) = “ I  1 dq i dq’A(x, q) K(q, q’) A(5’, 4’)  (4a) 
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so that the 6- function kernel S(q - 4’) of the unit operator is transformed into the unit 
kernel U(x- 5’) given by (3b). This unit kernel is an analytic function of the complex 
variables z and 2’ and plays the role of the reproducing kernel 

f(x) = 1 dp(x’) U(x - z’)f(x’) (44 

in the Hilbert space of analytic functions. 
Thus one sees that in a theory formulated in this Hilbert space of analytic func- 

tions the &functions will be replaced by analytic unit functions U and a reference to 
distributions will be avoided. This is the underlying idea in the analytic representation 
of quantum field theory suggested in I. I n  order to use the Hilbert space of analytic 
functions for a four-dimensional theory one is forced to work in euclidean metric. 
Schwinger (1958, 1959), Nakano (1959) and Symanzik (1966) have studied field 
theory in euclidean space and have shown that one can analytically continue from 
Minkowski space field theory to euclidean space field theory with 

qo = t + q 4  = iq, = it 

q4 being considered real. Then corresponding to a field 

W q )  = Y% q4) = v 4 1 ,  42 ,  q3, q 4 )  

in euclidean q-space, one can define a field Y(z) in euclidean z-space by 

Y ( z )  = T(z, z4) = Y(xl, z2, x3, x4) = J d4qA(4)(x, q)Y(q) (5a) 

with 

and 
A‘4’(2, 4 )  = 4% SI) 4 % 2 , 4 2 )  4 x 3 ,  q 3 )  4 x 4 ,  q4). (jc) 

The fields Y(x) in the four-dimensional z-space will depend on the four complex 
variables x = xl, x,, x3, x4, and the relevant functions will contain the euclidean 
invariant form z2 = xI2 + z22 + x32 + x42. 

We now proceed to obtain the field equations for the local interaction of an electron 
field with an electromagnetic field. By a straight transformation of the action integral 
in euclidean q-space, in which the transformations of the fields from q-space to 
x-space are done according to (5a), one gets an action integral in the four dimensional 
euclidean z- space 

+ e  1 ... f d4,u(x) d4p(x’) d4p(~’’ )W(4)(~ ,  Z’, B”)Y”(Z)y,Y(z’)A,(x”) (6a) 
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We should mention here that the real field A ( q )  can be transformed either into A(%) 
or into A(2) and therefore the integrands of (6a) can be symmetrized with respect to 
x and 2, The  action integral has the same form as the one in euclidean q- space except 
for the interaction term which appears in a nonlocal form described by the interaction 
kernel W 

WC4)(x, z’, z”) = 1 d4qA(4)(z, q)A(4)(z’, 4)A(4)(z”, q)  

( x -  x ’ ) ,  + (2’ - 2”)2 + (a” - z)Z 
= exp 

6a2 

We now apply a variational calculus in which the variations are restricted to analytic 
functions of complex variables x, that is, variations 6y(z)  of functions y(z )  satisfy the 
identity 

6(p)z = J d4p(z’) ?Y4)(x - 2’)  6p(z’) ( 7 4  

(7b) 

and the unit kernel 

U‘,’(z - 2’)  = u(z ,  - 21’) cr(i(x, - 2,’) u(x3 - g3’) u(i(z4 - zq’) 

appears instead of the &functions in expressions like 

Then from the equations 

one gets, within the framework of a c-number theory, 

(iV,+m)Y(z) = e 1 I d4p(z’) d4p(z”)W(4)(x, 3, ~”)A,(z’)y,Y(z’’) (Sa) 
1 1  

’?’(2)( - iV, + m) = e d4p(z’) d4p(x”)W(4)(2, z’ ,  2rr)?(~’)y2,AA(z’’) (Sb) 

a a a a -v, = Y1-+yz-+y3-+y4-. 
ax, ax, ax3 az, 

Equations (Sa, b,  c) are the z- space field equations for an electron interacting with 
an electromagnetic field. The  presence of the interaction kernel W gives the equa- 
tions a ‘nonlocal’ appearance and as long as one chooses W given by (6e), the equa- 
tions correspond to a local interaction in q-space. -4 change in the structure of W 
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may lead to a nonlocal interaction in q-space and we propose to show in the last section 
of the paper how a simple modification of W results in a simple regularization of 
electrodynamics. 

3. Green’s function equations 
Starting from an action integral one can obtain Green’s function equations of 

quantum electrodynamics by means of a simple formal quantization with the help 
of external source functions (Symanzik 1954, 1960, Valatin 1955). To obtain Green’s 
function equations in x-space we introduce external source functions &1), ~ ( x )  and 
J(z), which are analytic functions of x and 5, by defining an action integral 

I’ = I +  / d4p(~){[ (1)y(~)  + *(1)~(%) + J~(m)A,(x)) ( 9 4  

with I given by (6a). A and J being neutral fields, one can symmetrize their products 
in the integrand of (9a) with respect to 2: and 1. The c-number field equations obtained 
from the above action integral 

have in addition to the terms of (7d) additional inhomogeneous source terms. The  
generating functional x 

x = x[F,  77, J1 (9c) 

of the many-particle Green’s functions satisfies the equations obtained by applying 
the inhomogeneous equations (9b) on x, after replacing the fields by functional 
differential operators according to 

With this prescription we then get the following equations for the generating 
functional 

6 6 S 
((iV.+m)i-+ef f d4p(z’) d 4 p ~ x ” ) W ( 4 ” x , 1 ’ , 1 ’ ’ ) y p , 7  - S t @ )  6((,F’) SJ,(”’) 

6 6 
d4p(x’) d4p(d‘)W(4’(1, x’, 1”) - Yn - s&z ) SJ,(”’) 

s S 6 ( 0 , i  -+e / 1 d4p(z’) d*p(~” )W(~) (x ,  z’ ,  1”) - yi, - 8J,(x) Srl(Z’)  S((5”) 
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With the power series expansion of the functional x 

s . 9  d4p(Zp) d4p(Z1’) * e *  d4p(zq‘)&%) * * e  f(2m)JA1(21) a . .  J > , , ( z p )  
x ~ i , l . . . ~ . ~ u ~ , , . v ~ ~ ~ l ,  ‘ a .  x,, 21’, e . .  3,’; 21, ... z,, Zl’, f . .  Z,’) 
x JVq(Z,’) ‘ a .  Jv1(Z1’)77(xn’) a * *  dz1’) (104 

in which x and Z have been used for electron and photon coordinates respectively to 
avoid confusion and which has been symmetrized with respect to Z and Z using 
the fact that the sources J are neutral, one gets from (loa, b, c), after equating the 
coefficients to zero, 

( i V ~ + ~ ) G ~ l . . . / , r v l . . . v , ( ~ ,  21, z m ,  21’, 2 n ’ ;  2 1 ,  z p ,  Zl’, * * I  Zq’) 

n 
- I  = 2 U(4)(x-~j’)G~,1,,,R,c.l, , ,v~(xl, ... z,, S1’, ... ii , ... Zn’; Z,, ... Z,, Zl’, 

i=1 

I * *  2 4 )  + e / ! ‘  ~‘P(x’)  d 4 ~ ( Z ) W ‘ 4 ’ ( ~ ,  2’9 Z)YAGi,j.l .../,yvI.,,~,q(~’, 21, zm, Zl’, 

a . .  2%’; 2, z,, ... z,, Zl’, ... Z4’) 
- - - I  G L , . . . J , ~ V ~ . . . ~ ~ ~ ( X ~ ,  xm, z, zn’; 2 1 ,  zp,  zi’, ... z4’)( - iV,+m) 

m 

= 2 G i , l , , . > , ~ v l . , , ~ ~ ( ~ l ,  ... 2i, ... x m ,  gl’, ... 2,’; Z,, ... Z,, Zl’, ... Zq’) 
j = 1  

x U4’ (z j -Z)+e 4 .  (1 d4p(z’) d4p(Z’)Gni,,.n,vvl,,.vq(z1, ... x,, 2 ,  2,’ ,  ... 2,’; Z,, 

. a .  z,, Z’,  z, ‘)  , I  * Zaf)Yv W‘4’(1, x’, 2’) 

0 ~ G ~ , i . 1 . . . ~ . ~ ~ ~ . . . v , ( ~ l ,  * * a  z m ,  ~ l ’ ,  * a *  zn’;  2, 21, * a *  zp, Zlf, 
( 1 l b )  

z g ‘ )  

4 
- - I  - I  = - 2 gi, v,Ii(4)(Z-Z j’)G i , , , , . ~ p v l . . . i ‘ l . . . Y q ( Z 1 ~  a * *  xm, z1 1 4 . .  zn ; 2 1 ,  

j=1 

. I  I Z,, zl’, .. . 2i’, . . . 2,‘) - e 1 1 d4p(z’) ~ l ~ p ( x ” ) W ( ~ ) ( Z ,  2 ,  z”)yn .. 
x G~l . . . ; .p~I . . .vq(~’ ,  21, ... x,, Z”, Si’, ... gn’, 21, ... Z,, Zl’, ... Z4’) (11~) 

where a hat on the top of any term, like $i, means that the particular term is missing 
from the expression. The function G is the many-particle Green’s function of electro- 
dynamics inz- space and corresponds to the time-ordered Green’s function in euclidean 
q- space. 

If we now use the free electron and photon Green’s functions S and D 

( io ,+m)S(z ,  2’)  = U ( 4 ) ( z - ~ ‘ )  (114 

(114 

( I l f )  

S(x, 2’)  ( - iv; ,  + m) = LF4)(z - 5’ )  

OzD(Z, Z‘) = U@’(Z- Z’)  
DAdZ, 2’) = -gnvD(Z, 2’) 

which have been discussed in detail in I, we get from (1 l a ,  b, c) three sets of infinitely 
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One can now use these relationships between G and I? to obtain an infinite set of 
coupled equations from (12a) : 

1 d4p(x’)S(x, ~’)~~.l...~pV1...vy(~’, ~ l ,  . ’ . x,, Z,’, ... sn’; 21, ... z,, Zl‘, ... zq‘) 
d4p(x’) 2 S(x, E’)O-(4)(x’-sj’)( - iVzjt t~)~, , . , ,~BY:.. .vq(~l,  

. *  
= I j:l 

- I  - /  ... x,, x, , .. . i j  , .. . En’; Z,, . .. Z,, Z,’, ,. . Zq’) + e I ... I d4p(z’) 

x d4p(x”) d4p(x”’) d4p(Z) d4p(Z’) S(x, 5’) W4)(x’, Z”, .Z‘)y), 

. .  

x s(x”, P)D~~,,(Z’,  z)rA,~,l,,.dp~81 ...,, p’, xl, .,. z,, z1’, ... zn’; z, z,, 
.,. z,, Zl’, . I .  &’). ( 1 4 4  

If we now use the following graphical representation 

then equation (144 can be given a simple graphical representation 

where we have used 
U4)(2 -E ’ ) (  - iV,-. + m) = (S(x, m ’ ) } - l  (144  
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which satisfies the equation 

and it is being understood that we integrate over all the common points in the 
diagrams. 

From (13b) one can see that according to the proposed graphical representation a 
many-particle Green’s function will have the representation of a r-function with 
external electron and photon lines, that is 

G ~ , ~ . . , ~ , = ~ ’ ~ . , , ~ ~ ( ~ ~ ’  ’ * ’  X,’ &’’ a ’ ’  Zn’; 2 1 ’  - 9 .  2,’ Z1’’ . e .  zqr> 

- - - 

Applying (144, which shows how to split up a I?-function with one external electron 
line, to a many-particle Green’s function we then get the following coupled equation : 

t + i 

whose analytic form can be written down by the rules established for graphical 
representation. 

Starting from (12c) and following the same technique as above, it can be shown 
that a I?-function with an external photon line can be split up as follows: 

n - I-I-’ 
W 

which gives another set of coupled equations for the many-particle Green’s functions 
of electrodynamics 

Equations ( 1 5 ~ )  c) are the infinitely coupled equations for the many-particle 
Green’s functions in z-space and are same in structure as those in the conventional 
theory except for the presence of the interaction kernel W at each vertex. 
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4. Matrix elements for scattering processes 
We next proceed to calculate the matrix elements for Compton and M0ller 

scatterings from the z- space Green’s functions. The relationship between the x- space 
Green’s functions and the matrix elements for scattering processes, which is similar to 
the one in the conventional theory, can be established as follows. 

Consider a two-particle Green’s function, G(zl’, z2‘, Zl, Z2), in z-space. On multi- 
plying the r-function corresponding to the Green’s function G by the free particle 
wave functions A,@,) exp(-ip,x,) and exp(ip,’Z,’), n = 1, 2, A,, A,’ 
being the momentum space amplitudes of the particles involved in the scattering 
process, and integrating over z,, z,’, we get 

j” . . . / d4p(z1) d4p(z2) d4p(zl1) d4p(z2’) e x p ~  i ( w 1  +p2z2 -pl’gl1 - P ~ ’ ~ ~ ’ ) I  

x A1’(p1’)A2’(p2’)(iVz,. + m)(iV,,, +m)G(zl’, z2‘, Zl, .Q( - iVz2 + m)  

x ( - i v r ,  + m)A,@,)A,(Pl) (16) 

The quantity in (16) is the Fourier transform of the I?-function corresponding to G 
multiplied by the momentum space amplitudes of the free particles which is the 
matrix element in momentum space for the scattering of free incoming particles A, 
and A2 into free outgoing particles Al’ and Az’ (Gasiorowicz 1966) as shown in the 
diagram. The  diagram can be expanded using the coupled equations of the previous 
section to give all the diagrams of all orders that contribute to the scattering process 
and the matrix elements for different orders can be calculated according to the 
prescription given above. 

4.1. Compton scattering 
In  the expansion of a two-particle Green’s function G(z, ti’; 2, z’) 

- 
+- ... + - - n G - G(OJ + ( y 2 ’  + 0 , .  

- 

the second-order diagram can be written down analytically as 

G(2)(x, 2’;  2, Z’) = e2 j . , . d4p(z1) . . . d4p(x6) S(z,  Zl) W(4)(z1, z2, Z,)D(Z, Z2) 

xynS(z3, Z4)Y”D(Z5, z’)w(4)(z4, 2 5 ,  Z6) S(%, 
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Then with the prescription given above, the matrix element for second-order Comp- 
ton scattering becomes 

~ ~ + 2 ) ( p ~ ,  p,, kl, k2)  = e2 J’ . . . j“ d4p(z1) . . . d4p(xs) expi - i(p1x6 + k1z5 - p 2 ~ ,  - k 2 ~ 2 ) )  

(17) 
x * ( ~ 2 ~ A ( k 2 )  ~ ‘ ~ ’ ( ~ 1 1 ~ 2 9  ~ o ) ~ n s ( x 3 ,  J ~ ) Y Y  

x W‘4’(2-4, 53%) A,(kl) Y ( P 1 ) .  

From the connection between the momentum spaces of q-space and x-space estab- 
lished in I, the momentum space amplitudes of the free electron and photon wave 
functions are found to be 

L‘sing the Fourier transform of the interaction kernel W 

W‘4’(2, z’,  3’’) = - 1 . . . 1 d4p d4p‘ d4p“ exp{ - i(pz +p’z’ -p”W”)}W(4)(p, p’ ,  p”)  
(2+2 

(194  
W(4)(p, p’,  p”) = ( 2 ~ ) ~ ( 4 x a ~ ) ~ 6 ( ~ ) ( ~  +p’ -p”)G’“’(p, p’ ,  p”)  (19b)- 

$ 7 ( 4 ) ( p , p ’ , p n )  = expi- a2(p”2--ppf)) (19c) 
and the Fourier transform of the free electron Green’s function S 

S(x,W’) = - 1 d4p exp{ - ip(z - S’)}S(p)  
( 2 4 *  

p + m  
S ( p )  = ( 4 7 ~ ~ ) ~  exp( - a2p2) ___ 

p 2  + m2 

the x-integrations in (17) can be done with the help of the identity 

d4p(z)exp{-i(.xz-/34) = -----86‘4)(~-/3)exp 
(47ra2)3 

( 2 4 4  

(4na2)3 
-- - S(4)(.x -/3) exp(a2cr2) 

and the remaining integrations can be done using the &functions arising out of the 
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4.2. Meller scattering 
The matrix element for second-order Maller scattering can be calculated in the 

same way from a two-electron Green’s function G(z, z’, Z“, ,Z’//) in z-space. From the 
second-order term in the expansion of G 

+ + ... 

one gets the matrix element for second-order Maller scattering 

~’$”(P~)~(P~)(iv,+m)(iV,~+m)G‘~’(x, x’, Z”, P) 
x ( - i v +  + m)( - iv;.. + m)Y(p2)Y(p1)  exp(- iCp,z” +p2z”’)) 

Once, again, using the Fourier transform of the interaction kernel PV, the electron 
Green’s function S, the Fourier transform of the free photon Green’s function D, 

1 
D(k) = ( 4 ~ a ~ ) ~  exp( - a2k2) - 

k2 .- 
and the identity (20), one gets from (22a) 

Equations (21) and (23) give the matrix elements for second-order Compton and 
M d e r  scatterings respectively with an interaction kernel W. With the choice of 
(19a, b, c)  for W, which corresponds to a local interaction in q- space, and a transforma- 
tion back to Lorentz metric, these are exactly the same as the matrix elements obtained 
from the conventional theory (Schweber 1961). 
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5. Divergent diagrams, regularization and nonlocal interactions 
We next look into the basic divergent diagrams of electrodynamics, namely, 

electron self-energy, vacuum polarization and the vertex operator. T o  calculate the 
electron self-energy from z- space formulation, we start with the total electron Green’s 
function S which satisfies the equation 

S(z, 5’) = S(z ,  z’) + 1 J^ d4p(z1) d4p(z2) S(x, B,)C(z,, Z2) S(z2, 5’). (24a) 

With the graphical notation 

* 
SCz,.?’) = + =  

we get the exact equation for the total electron Green’s function, 

where 2 is the second-order electron self-energy 

2 (z,5’) = e2 !” ... d4p(z,) , .. d4p(x4) W(*)(x, Zl, Z2)yI, S(z,, 5,)y, 

x DLV(z2 ,  z4) W(*)(x,, x4, 5’). (26) 
With the proper-time parameter representation of S and D (different representations 
of S and D have been worked out in I) 

S(z ,  a’) = i ds S(z ,  Z’; s) 1,” 
S(z, Z’; s) = - d4p exp{ - ip(x - a’)}(# + m)h(p;  p2 = m2; s)  

(27d4 
(27b) 
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and 

d4k exp( - ik(z - 8’)}h(k; p2 = 0 ;  s) 

where 

A(k;  p2; s) = ( 4 ~ a ~ ) ~  exp{ - i(k2 + p2)s} exp( - a2k2) 

and the Fourier transform of W, one can reduce (26) to get 

2 ( z ,  8’) = - 
(244 

e2 2 ( p )  = - - ( 4 ~ a ~ ) ~  1,“ ds, 1,” ds, 1 d4k exp[a2{(p - + k2}] 
(271.14 

x exp[ - i{(p - k)’ + m2}s,] exp( - ik2s2)L%4)(p - k, k, p )  
x YA(P - E + m ) ~ , ~ ( ~ ’ ( k ,  p - k, p )  - (28b) 

Next we consider vacuum polarization. The total photon Green’s function D, 
A 
Dhv ( z , F ’ )  = GAP ( z , F / )  E 

has the expansion 

+ = -  + + .... 

in which the second-order diagram contains the vacuum polarization term 

x exp[ - i(P2 + m2>s,l exp[ - i((p + k)2 + m2)s21~(4yp ,  A ,  p + k) 
x T r [ m ( P : + m ) y , ( ~ + ~ + m ) 1 ~ ( 4 ’ @ ,  k , p + . K ) .  (30b) 

Finally we consider the vertex operator. In  the coupled equations for the many- 
particle Green’s functions there is always a vertex part 
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which in its lowest order reduces to 

The analytical form of the vertex operator 

X D,,(z~, f5)yVS(Z4, 56)w‘4’(x3, 2 4 ,  2’)Y,Tv‘4’(Z5, 2 6 ,  2”) (314  
and when reduced, gives the momentum space representation of the vertex operator 
A to the order Q, 
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If one now chooses W given by (19a, b, c) corresponding to a local interaction in 
q-space, equations (28b), (30b) and (31b)  reduce to the standard divergent expressions 
for Z(p) ,  I I f t V ( K )  and hv(p , ,pz )  of the conventional theory, apart from some normaliza- 
tion factors, and one can regularize these divergent expressions using any standard 
regularization technique. 

The interesting feature of the analytical representation of quantum field theory is 
that a change in the structure of the interaction kernel Wdoes not change the formula- 
tion of the theory since the form of the field equations, of the coupled equations for the 
many-particle Green’s functions and of the Green’s functions themselves remains 
unchanged. Rut any change in Wwill correspond to a nonlocal interaction in q- space 
and will, therefore, affect the observables. Thus one can consider the analytic 
representation of quantum field theory as a more general theory with the local q- space 
theory built in with the particular choice of W given by (6e). It will be of interest 
then to look into the different structures of W and study their effects on the observ- 
ables. We now propose to show that a suitable modification of the interaction kernel 
W makes the basic divergences of electrodynamics convergent and can be used as a 
regularization technique. 

I t  is obvious that in choosing the modified interaction kernel we should be guided 
by the following requirements : 

(i) the modified interaction kernel must be a symmetric function of three sets 
of complex variables, being analytic in each of the three sets of variables, so that the 
general formulation of the theory will remain unchanged ; 

(ii) the Fourier transform of the modified interaction kernel must ensure energy- 
momentum conservation at each nonlocal vertex in order that the theory will be 
physically realistic; 

(iii) under a suitably defined limiting process the modified interaction kernel 
must reduce to the original interaction kernel (6e) corresponding to the local q-space 
interaction. 

In  principle, one can construct a large number of modified interaction kernels 
which will meet the above requirements. For our discussion we choose the following 
modified interaction kernel : 

) (32) 
(x-x”2+(x”x”)~+(x”-X)~ 

W,(4)(~,  x’, x”) = [T@( 1 + ,42a]2] 
6( 1 + @a2 

where ,B is a dimensionless parameter. 
The  above kernel is analytic in each of the three sets of complex variables satisfy- 

ing the first requirement. The  Fourier transform of this modified kernel turns out to 
be 

W,(4)(z, x‘, x”) = - J . , , J d4p d4p‘ d4p” exp{ - i(px +p’x’ -p”i?”)} 
( 2 4 1 2  

which assures energy-momentum conservation at each nonlocal vertex, 
limit p --f 0, one has 

I n  the 

lim W, + W 
R -0 
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W being the interaction kernel (6e) corresponding to the local interaction in q-space. 
The  modified interaction kernel thus meets all the requirements. 

If one now calculates the electron self-energy E, defined by (26) ,  using the 
modified interaction kernel, one gets in momentum space representation 

I,($) = - - (477a2)' exp( - aZp2) I ds1 j ds2 / d4ky?,(p - E + m)yn 

x exp[ - i{(p - k ) 2  + m2)sl] exp( - ik2s2) exp{ - 2/3a2(p2 + K 2  -PA)) 
which, after a rotation of the s1 and s2 paths of integration through - 477 and a transla- 
tion of the origin, takes the form 

2 R(p)  = - (4na')' exp( - (1 + p)a2p2} exp(/3a2m2) 

m m e2 

( W 4  0 0 

e2 

(27714 

x / RaZ ds,/ Ra2 d s 2 j  d 4 k y d p  - k + m)yA exp[ - {(P - k)2  + m2)s1] 

x exp( - ik's,). (34 )  
Similarly, one has for vacuum polarization 

e2 
IIRAv(k)  = - (47ra2)' exp{ - (1 s P ) a 2 k 2 )  exp(2pa2m2) 

( 2 4 *  
P 

x exp{ - (p2  + m2)sl) exp[ - { ( p  + m2)s2] (35 )  
and for the vertex operator to the order U. 

il 
' lRv(P1,  PZ) = (4Xa2)3  exp{ - (l +p)a2(p12 +p2' -plp2)) exp(2pa2m2) 

x j_lds1J's:'ds2S_*ds,I d4bA($l - E  + m)yv(p2 - E + m)yn 

x exp[ - {(pl - + m2)s1] exp[ - { (pz  - k)' + m2)s,] exp( - k2s3) .  (36)  
A comparison of C,, ITRazv and ABv with E, I IAv  and AV confirms that 

lim E R ,  noAV, ADv -+E, ITA", A".? 
R +O 

Thus, the modification of the interaction kernel results in replacing the zero lower 
limits of the proper-time integrals in (28b) ,  (30b) and (31b) by a nonzero lower limit 
,5az. Since the divergences in E, IIav and A" occur in the final stages of integrating 
the proper time parameters to the origin, as long as ,l3 > 0, that is, as long as pa' > 0, 
the quantities sR, II,I1.v and 11," are all finite. For negative values of /3 the integrals 
will diverge again, since for pa2 < 0 the integration path has to pass through the 
origin where the divergences occur. Therefore, as long as the dimensionless para- 
meter /3 is chosen to be positive, s,, ITRav and ABV will be finite. 

Schwinger (195 1) has discussed a regularization process in which the zero lower 
limit of the proper-time integrals is replaced by a nonzero positive quantity so. 
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This makes the integrals convergent and the limit so -+O is taken after suitable 
subtractions. In  the calculations with the modified interaction, taking the limit 
is + O ,  which is equivalent to reducing the modified interaction kernel Wb to the 
original interaction kernel W corresponding to the local q- space interaction, makes the 
lower limit pa2 of the proper-time integrals in (34))  (35) and (36) go to zero. Thus 
the modification of the interaction kernel results in a regularization process similar to 
the one of Schwinger. We would like to point out though that the cut-off pa2 is 
not an arbitrary one, but comes in naturally from the modified interaction. 

We now examine the consequences of modifying the interaction kernel in q- space. 
The  action due to the interaction term with the modified interaction kernel 

I, = - e  i ... J d4p(z) d4p(x‘) d4p(~”)W,(4) (~ ,  Z’, Z”)‘E(Z)y,Y(x’)A,(x”) (37) 

corresponds to an interaction in q-space defined by the action integral 

I, = - e  !” . .. 1’ d4q d4q‘ d4q” F,(q, q ’ ,  q”)y?(q)y),Y(q’) A,(q”) (38a) 
where 

The modification of the interaction kernel thus leads to a nonlocal interaction in 
q-space defined by (3Xa, b)  with the q-space field equations modified to 

( iV,  + m) y(q) = e / d4q’ d4q” F&, q’ ,  q” )~~ ’+ ’ (q ’ )  A,(q”) ( 3 9 )  

and to two similar equations. 
Using the following representation of the 6- function, 

limfca(q--q’) = 6(q-q’) 
E i o  

one finds that 
lim 

The  modification of 
4 -0 

F4(q, q’ ,  4”) = 6 ‘ 4 ’ ( q - q ’ ) S ‘ 4 ’ ( q - q ” ) .  (40)  

the interaction kernel therefore shows the possibility of 
formulating a nonlocal theory in q-space in which CO, IITqav and Abv are finite. The 
action integral (38a) satisfies the general requirements of a nonlocal field theory 
proposed by Chretien and Peierls (1954). Since /3 is a dimensionless parameter and 
a2 has the dimension of square of length, pa2 may be considered to be the measure of 
the fundamental length associated with a nonlocal theory. T o  summarize, this 
modification of the interaction kernel leads to a regularizing process and also leads to 
the explicit form of a nonlocal interaction in q-space associated with the cut-off para- 
meter of the regularization process. 
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